研究業績
学術論文:2023/2022/2021/2020/2019/2018/2017/2016/2015/2014/2013/2012/2011/2010/-2009年/ 著書
学術論文
2023年
Charge-selective Aggregation Behavior of Thermoresponsive Polyelectrolytes having Low Charge Density in Aqueous Solutions of Organic Counterions
Langmuir, 39(5), 1730 (2023).
画像処理による化学分析の新潮流
化学と工業, 76(2) 106 (2023).
Contact Area Dependence of the Dissolution of Ferrous Ions from Pure Iron Wires into Freeze-concentrated Solutions Revealed by a Combination of Microscopy and Image Processing
Bulletin of the Chemical Society of Japan, 96(4), 367 (2023).
明視野顕微画像と画像処理の組み合わせによるマイクロ・ナノ計測法の新展開
化学とマイクロ・ナノシステム学会誌, 22(1) 54 (2023).
Rapid acquisition of absorption spectra to monitor proton migration in nanoliter space using the RGB-spectrum-conversion method with a 10 ms interval
Analytical Sciences, Just Accepted.
2022年
湿式化学分析の基盤をなす高度な技術を いかに継承・発展させていくか ─鉄鋼化学分析の視点から─
ぶんせき, (2), 63 (2022).
Ionic Thermoresponsive Fluorescent Polymers for Detecting Countercharged Surfactants Without Phase Separation
Colloid and Surface A, 656, 130366 (2023).
デジタルカラー画像の色彩情報を用いた比色分析の開発とその展開
Bulletin of the Society of Sea Water Science, Japan, 76, 2 (2022).
Total Protein Assay by PCA-based RGB-spectrum Conversion Methods with Smartphone-acquired Digital Images
Analytical Sciences, 38, 869 (2022).
水溶液の相分離により生じたナノ・マイクロ空間を利用する分離・計測法の確立
分析化学, 71, 399-409 (2022).
Dissolution Behavior of Iron in Contact with Frozen Electrolyte Solutions
Journal of Ion Exchange, 33(4), 142 (2022)
核生成の「夜明け前」を観る 光ピンセットと Raman 分光が解き明かす結晶化の謎
化学, 77(10), 61 (2022)
Fabrication of Paper-based Analytical Devices by Laminating Method with Thermal Ink Ribbon, Sticky Notes, and Office Appliances
Analytical Methods, Just Accepted (2022)
2021年
Manipulation of Aggregation-Induced Emission of Thermoresponsive Fluorescent Polymers Having Gold(I)-Thiol Groups for a Fluorescent Chemosensor
Colloid and Surface A, 618, 126459 (2021).
二クロム酸カリウム滴定のための窒素雰囲気下における定量的な鉄の還元
鉄と鋼, 107, 566-576 (2021).
Determination of free MgO in steelmaking slags by solvent extraction using 2,2,2-trichloroethanol combined with atomic absorption spectrometry
ISIJ International, Just accepted (2021).
In situ Visualization of Ferrous Iron dissolved from Pure Iron Wire into Thin Frozen Aqueous Solution Films by Combination of Microscopy and Image Processing
Sensors and Materials, in press.
Cover Article
Geometrical pH Mapping of microfluids by Principal-Component-Analysis-based xyz-Spectrum Conversion Method
Analytica Chimica Acta, 1182, 338952 (2021).
色彩情報が拓く比色分析の多様化
ぶんせき, (1), 22 (2022).
2020年
ISIJ International, 61, 506-512 (2021)
ぶんせき, 3, 85-93 (2020)
Analytica Chimica Acta, 1110, 122-130 (2020)
Talanta, 216, 120952 (2020)
ChemSystemsChem, 2, e2000006 (2020)
Front Cover, Cover profile
Chemistry Letters, 49, 974-977 (2020)
Data in Brief, 31C, 105998 (2020)
分析化学, 69, 693-703 (2020)
Bulletin of the Chemical Society of Japan, 94, 579-589 (2020)
2019年
Colloiid and Surface A, 585, 124113 (2020)
Crystal Growth and Design, 19, 6199-6206 (2019)
「熱応答性高分子との複合化による金微粒子の計測機能の開発」
分析化学,Vol.68,No.5,pp.289-296,2019.5.
Physical Chemistry Chemical Physics, 21, 16889-16894(2019)
Journal of Physical Chemistry C, 123, 6062-6069 (2019)
ACS Omega, 4, 13570-13576 (2019)
2018年
Specific formation of hydrophobic aggregates of ionic thermoresponsive polymers with oppositely-charged ionic surfactants under phase transition temperature.
Coll. Surf. A, vol. 560, 98-105 (2019).
Extraction of Free-magnesia in Steel-making Slags with Iodine-Ethanol Solution
ISIJ International, vol. 58, 1474-1479 (2018).
“Specific Turn-on Infra-red Fluorescence from non-fluorescent gold nanoclusters by reaction with sulfhydryl-oligopeptides”
Coll. Surf. A, vol. 538, pp. 14-22 (2018).2018.1
Journal of Colloid and Interface Science, 532, 231-235 (2018)
"Electrophoresis in ice surface grooves for probing protein affinity to a specific plane of ice crystal" Talanta, 183, 345-351(2018)
2017年
「ケイ酸ナトリウム処理による製鋼スラグからのセシウム吸着剤の創製」
分析化学,vol.66, No.11, pp. 809-815 (2017).2017.11
“Fabrication of thermoresponsive near-infrared fluorescent gold nanocomposites for cell imaging”
Sensors and actuators B, vol. 247, 188-196, 2017
Viscosity of Freeze-Concentrated Solution Confined in Micro/ Nanospace Surrounded by Ice
Journal of Physical Chemistry C, 121, 12321-12328(2017)
2016年
“Interaction Potential between Biosensing Nanoparticles Determined by Combining Small-Angle X-ray Scattering and Model-Potential-Free Liquid Theory”
J. Phys. Chem. C, vol. 120 25564-25571, 2016
“Colorimetric assay of homocysteine using gold nanoparticles conjugated with thermoresponsive copolymer”
Analytical methods, Vol. 8, 7185-7192, 2016
“Decrease in Chiral Purity of Cysteine Enhances Optical Activity of Gold Particles Assembled with Cysteine”
Chem. Lett., Vol. 45, pp. 1093-1095, 2016
2015年
“Thermal-induced immuno-nephelometry using gold nanoparticles conjugated with a thermoresponsive polymer for the detection of avidin”
Anal. Sci.,Vol. 31,No. 6,pp. 495-501,2015.6
2014年
“Interaction of poly(N-isopropylacrylamide) with sodium dodecyl sulfate below the critical aggregation concentration”
Langmuir,Vol. 30,No. 22,6367-6372,2014.5
「高温高圧水を用いる水熱処理装置の作製と鉄鋼スラグからの成分元素の溶出」
鉄と鋼,Vol.100,No.8,pp.1014-1020,2014.8
「酸化カルシウムの溶解によるエチレングリコールの物性変化とその抑制」
鉄と鋼,Vol.100,No.7,pp.911-918,2014.7
2013年
“Fusion growth of gold nanoparticles induced by the conformational change of a thermoresponsive polymer studied by distance distribution functions”
J.Phys.Chem.C,Vol.117,No.26,pp.13602-13608,2013.6
2012年
“Release of Nile red from thermoresponsive gold nanocomposites by heating a solution and the addition of glutathione”
Anal.Sci.,Vol.28,No.12,pp.1125-1132,2012.12
2011年
“Thermal-induced growth of gold nanoparticles conjugated with thermoresponsive polymer without chemical reduction”
J.Coll.Int.Sci.,Vol.359,No.1,pp.142-147,2011.7
「イオン交換吸着-イオン対溶離法による鉄鋼中のビスマス,鉛およびアンチモンの分離濃縮」
鉄と鋼,Vol.97,No.2,pp.54-60,2011.2
2010年
“Colorimetric assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer”
Langmuir,Vol.26,No.9,pp.6818-6825,2010.4
-2009年
“Colorimetric assay of aminopeptidase N activity based on inhibition of the disassembly of gold nano-composites conjugated with a thermo-responsive copolymer”
Anal.Sci.,Vol.25,No.2,pp.267-273,2009.2
「イオン交換吸着-イオン対溶離法による鉄鋼分解液からの鉛(II)の分離濃縮および黒鉛炉原子吸光定量」
鉄と鋼,Vol.95,No.1,pp.59-64,2009.1
「イオン交換吸着-イオン対溶離法による鉄鋼分解液中からの微量ビスマスの分離濃縮と黒鉛炉原子吸光法による定量」
鉄と鋼,Vol.94,No.3,pp.80-85,2008.3.
「熱応答性キトサンを用いる重金属イオンの濃縮及び微量カドミウムの原子吸光定量」
分析化学,Vol.56,No.9,pp.721-728,2007.9.
“Blue-to-red chromatic sensor composed of gold nanoparticles conjugated with thermoresponsive copolymer for thiol sensing”
Langmuir,Vol. 23,No. 22,pp. 11225-11232,2007.9.
“Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode”
Electrochim. Acta,vol. 52,No. 9,pp. 3242-3249,2007.2
「エチレンジアミン四酢酸を用いるプレカラム誘導体化/逆相分配高速液体クロマトグラフィーによる鉄鋼中の微量ビスマスの定量」
鉄と鋼,Vol. 93,No. 2,pp. 94-99,2007.2.
“Simple and selective sensing of cysteine using gold nanoparticles conjugated with a thermoresponsive copolymer having carboxyl groups”
Anal. Sci.,Vol. 23,No. 1,pp. 85-90,2007.1
“Tris(2-methyl-8-quinolinolato)iron(III) as a novel spectrophotometric probe for silanol detection”
Anal. Sci.,Vol. 22,No. 3,pp. 421-426,2006.3
「高速液体クロマトグラフィーによるオキシン-銅錯体の解離反応速度定数の測定」
分析化学,Vol. 55,No. 3,pp. 185-190,2006.3
著書
(Nominated as an outstanding Ph.D. thesis by Tokyo Institute of Technology, Japan)
Springer Nature, ISBN978-981-13-8808-8, 2019.8. [単著]
「これからの環境分析化学入門」,講談社,ISBN978-4-06-154382-9,
pp. iii-iv(前書き),pp.1-9(第1章),pp.84-100(第5章),pp.158-183(第11章を担当), 2013.11.〔分担執筆〕
「塩試験方法 第4版」, 塩事業センター,pp. 27-62(第6章「特殊微量成分」を担当)2013.9.〔分担執筆〕
「分析化学用語辞典」, オーム社,ISBN978-4-274-21091-4(全3382語中36語を担当)2011.10.〔分担執筆〕
“Nanomaterials for the life sciences,Vol. 8 Nanocomposites”
Wiley-Vch,ISBN978-3-527-32168-1,pp. 199-240
("Chapter 6 Gold – polymer nanocomposites for bioimaging and biosensing"を担当)2010.8.〔分担執筆〕